Cohen's Kappa for Inter-Rater Reliability and Pearson's Chi-Square for Analysis of Cross-Tabulation Data

Consider the simplest case of two judges making dichotomous judgments about a common set of observations. (Note: Cohen's Kappa applies only to the two-judge case; for three or more judges see Fleiss's Kappa.) The judgment data is presented at right as one column for each judge, with the two possible judgments being labeled 0 and 1 (for "no" vs. "yes," or "diagnosis negative" vs. "diagnosis positive," or "get off the stage" vs. "you're going to Hollywood!" etc.). Judge 1 and Judge 2 are called Simon and Paula respectively. Instead of people, they could also be different measuring devices or diagnostic instruments.

The same information as in the data columns can be presented in a cross-tabulation table with one judge in the rows and the other in the columns (below). The 0 and 1 judgments have here been arbitrarily replaced with "no" and "yes." Cells in the table are simply the counts of the number of observations for which Simon and Paula both said "no," or when both said "yes," or when one said "no" and the other "yes" and v.v..

At the bottom of each column the column totals have been included; similarly at the right of each row, the row totals are presented. These tell us that Simon had a total of 12 "no's" (or 0's) and 8 "yes's" (or 1's); Paula had 11 and 9, respectively. The total number of judgments is 20, whichever judge's responses you tally.
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From the diagonal of the table we see that Simon and Paula agreed on their "no" judgments 8 times, and agreed on "yes" judgments 5 times; that makes 13 agreements, which, with a total of 20 judgments, means that they agreed 13/20 times or 65%. But this is an inflated agreement rate, because it includes a certain amount of chance agreement; that is, if Simon and Paula's judgments were completely independent and had nothing to do with each other, they would still coincide a certain number of times just by chance. Without even making a single observation, they could each write down a sequence of 20 1's and 0's at random, and some of their pairs of numbers would be the same just by chance. How do we figure out how often this chance agreement would occur?

It's based on those row and column totals (called "marginal totals" because they're in the margins of the table). Say Simon wrote down 20 random yes's and no's and it turned out he had written 8 yes's and 12 no's (as in the table above); likewise Paula wrote 9 yes's  and 11 no's. If Paula's numbers are independent of Simon's, having nothing to do with them, then our best guess about whether Simon agrees with one of her judgments is just based on Simon's own frequencies: he says no 12 out of 20 times. So when Paula said no 11 times, we expect Simon to say no 12/20 of those 11 times -- which would be 11*12/20 = 6.6 times. And of Paula's 11 no's, Simon would have said yes 8/20 of the time, and 11*8/20 = 4.4. Of course the fractional numbers of responses can't actually occur -- they just represent an idealized probable number of responses. Continuing with the same logic, when Paula said yes those 9 times, we expect Simon to have said no 12/20 of those 9 times -- which would be 9*12/20 = 5.4 times. And of Paula's 9 yes's, Simon would have said yes 8/20 of the time, and 9*8/20 = 3.6. Once again, all these calculations assume that nothing is causing the judges to respond alike, so all we can do is apply one person's relative frequencies of yes and no to the other person's responses, to gauge how often we'd expect them to be the same. The expected frequencies we've just computed can be tabled just like the observed frequencies were above:
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Notice that we could have come at the calculations from the other direction, taking Paula's relative frequencies and applying them to Simon's yes and no totals. Her frequencies were yes 9 of 20 times and no 11 of 20 times, so we multiply Simon's 12 no's and 8 yes's by each of those fractions (9/20 and 11/20). All this parallel logic ends up doing is switching the order of multiplication in each of the expected frequencies cells, which of course doesn't affect the result. Compare this table to the previous one:
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	12*9/20 = 5.4
	12

	
	yes
	8*11/20 = 4.4
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So much for calculating expected frequencies; what now to do with them? Note that the table can now tell us how many agreements to expect just by chance: it's again the sum of the cells on the diagonal, where both judges said no or both said yes. The expected number of agreements on no is 6.6, and on yes it's 3.6. That means just by chance we expect the judges to be in agreement 6.6 + 3.6 = 10.2 times. The fact that they were observed to agree 13 times now seems less impressive (not that that's very impressive anyway). How many times did they agree beyond what we'd expect by chance? 13 - 10.2 = 2.8. But it wouldn't be fair to compare that 2.8 to the 20 total opportunities for agreement -- if we subtract the chance rate from their actual agreements, we should subtract it from their possible number of agreements as well. Given that 10.2 of the 20 ratings would be expected to agree by chance, there were 20 - 10.2 = 9.8 opportunities for true (non-chance) agreement. Taking only non-chance agreements into account, the judges agreed on 2.8 of their 9.8 opportunities, and 2.8/9.8 = .285. This is Cohen's Kappa, a measure of inter-rater reliability, whose formula looks like this:

(observed # of agreements - expected # of agreements) / (possible # of agreements - expected # of agreements)

or equivalently,

(observed # of agreements - expected # of agreements) / (total # of judgments - expected # of agreements)

Sometimes this is presented in terms of probabilities or some other transformation that preserves this ratio.

Kappa answers the question, what is the rate of agreement between judges when the chance rate of agreement is taken into account? A different question could be asked, given a cross-tabulation like we've been looking at: we could ask, is the number of observations falling into each of the four cells consistent with the hypothesis that the two classification dimensions of the table are independent, i.e., have nothing to do with each other? It's a related question, especially if we apply it to the case of our two judges, but notice that it's not just a question about agreements; it involves the disagreements (in the off-diagonal cells) too. It could happen that the agreements are as close as they could possibly be to the frequencies expected by chance, in which case you might think the judgments have nothing to do with each other. But what if ALL the disagreements fall into the cell in which Paula says yes and Simon says no, and NONE of them fall into the cell where Simon says yes and Paula says no? In that case we could conclude that Paula just says yes a lot more than Simon does. Or could we? We would once again first have to take into account the chance rates of the two kinds of disagreements, and then determine whether our data represent a significant departure from chance. "Significant" is the key word, because we can use a hypothesis-testing strategy to evaluate the strength of the relationship between the two judges' classifications. (There is also a significance test that can be used for Kappa, but who cares... if Kappa is high, it'll be significant, and if it's low, it doesn't matter if it's significant because unless the judges have a high rate of agreement, the judgments will be ambiguous and therefore useless to you.)

The significance test that's most commonly applied to this kind of cross-tabulation question is the Pearson Chi-square test. Chi-square is a family of distributions that each have a different shape depending on the degrees of freedom, exactly like the t and F (families of) distributions. (Mathematically it's the distribution of the sums of a certain number of scores randomly sampled from a standard normal (that is, z) distribution and then squared: Chi-square = sum(z2). The number of scores that are sampled and squared and added together is the df for that Chi-square distribution.) Given the df, the exact areas under the curve are known, and thus we also know the exact probabilities of certain regions of the distribution being sampled randomly. This is the same logic as in the use of the t and F statistics, though it may not sound familiar. For t and F there are various ways of transforming data so that the data will follow the desired distribution; think of the different formulas for t for a single sample, for paired samples, for independent samples, and for F for testing ANOVA group differences or correlations or regression equations. Likewise, the data from a cross-tabulation table will fit a Chi-square distribution if this formula is applied:

Chi-square = sum for all cells of [(observed frequency - expected frequency)2 / expected frequency]

But note, this is a significance test, and the data only fit that distribution if the null hypothesis is true -- the null hypothesis being that the population frequencies of observations falling into each cell are completely independent of one another. The null hypothesis is that the expected frequencies we calculated above are in fact the population proportions, because the two dimensions of the table have nothing to do with one another. If the observed frequencies are actually a large departure from what's expected by chance, our Chi-square value will be one that is very large -- so large that it will be out near the tail of the (null hypothesis-based) distribution and would have a very small probability (p-value) of occurring. Bottom line: a small p-value, say less than .05 by convention, is a sign that the cell frequencies are not the result of two independent classification schemes, but that in fact the categories are related. The strength of that relationship is captured by the Phi coefficient in a 2x2 table, which is just the correlation between our initial two columns of 1's and 0's. In fact, squaring Phi and multiplying by the number of observations (20 in this case) will give you the value of Chi-square.

To see this all in action, consider our observed and expected frequencies again:
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With the formula

Chi-square = sum for all cells of [(observed frequency - expected frequency)2 / expected frequency]

we have

Chi-square = [(8 - 6.6)2 / 6.6] + [(4 - 5.4)2 / 5.4] + [(3 - 4.4)2 / 4.4] + [(5 - 3.6)2 / 3.6]


= [(1.4)2 / 6.6] + [(-1.4)2 / 5.4] + [(-1.4)2 / 4.4] + [(1.4)2 / 3.6]


= [1.96 / 6.6] + [1.96 / 5.4] + [1.96 / 4.4] + [1.96 / 3.6]


= [.297] + [.363] + [.445] + [.544]


= 1.649 (within rounding error)

The df for a cross-tabulation table are equal to (# of rows - 1)*(# of columns - 1). You can make sense of that by realizing that given the marginal totals, if you fill in that number of cell frequencies, all the rest are determined. In the case of our 2x2 table, the df are 
(2-1)*(2-1) = 1*1 = 1. Find a Chi-square table (or a program) and look up the Chi-square value of 1.649 on 1 df, and you'll find it has a probability of occurring of p = .199 under the null hypothesis -- a fairly high probability and thus not even close to being significant (since we'd typically reject the null hypothesis only when p < .05). The test tells us that with no evidence to the contrary, we might as well treat Simon's and Paula's judgments as independent of one another, related no more than chance would predict.

Kappa can be extended to measure agreement in cases where the judges make more than just a yes/no or other dichotomous decision, but as noted above, it's restricted to measuring agreement between two judges. The table it's applied to will always be square, since both judges are using the same number of categories. The Pearson Chi-square also applies only to two-way classifications (and there are some other considerations that matter as well). But the table needn't be square: Chi-square can be used to evaluate whether any two dimensions classify observations independently of each other: gender (male/female) vs. car color preference (red / blue / black / silver); political affiliation (Democrat / Republican / Independent) vs. pet type (dog / cat / hamster / ferret / lizard); etc. And of course that might include an experimental manipulation (control / experimental) vs. a frequency count outcome measure such as helped / didn't help, or complied / didn't comply. When the table is larger than 2x2, Pearson's Chi-square is harder to interpret, since it measures only independence or relatedness in general, not which components of the table contribute the most to the relationship between the categorizations. More complex analyses may involve alternate tests that also fit the chi-square distribution, such as the likelihood ratio test, which is computed completely differently from the formula described here. In the simpler direction, Chi-square can also be used with a one-dimensional classification: df = (number of categories - 1), and expected frequencies for all cells are just the total number of observations divided by the number of cells. (Sometimes I amuse myself by determining whether I'm biased toward making a, b, c, or d the correct choice on multiple choice exams; with 50 items I'd expect 12.5 of each, and the df = 3.)

In SPSS: Chi-square is available under the Analyze -> Nonparametric Tests -> Chi-square... menu, but that's not the easiest one to use. Instead, use Analyze -> Descriptive Statistics -> Crosstabs... You identify one of your columns as the row variable and the other as the column variable. Clicking on "Display clustered bar charts" will give an easily interpretable bar graph of the data. Clicking on "Suppress tables" will do just that, in case you're only interested in seeing the other parts of the output -- seems like a silly idea though. Clicking "Statistics" will allow you to ask for (among other things): Chi-square, which is supplemented by some related tests that probably will not be of interest unless you're already purposely looking for them; Correlations, which gives you Pearson and some others that may be appropriate depending on your data; Phi and Cramer's V (a generalization of Phi that can apply when a classification dimension allows more than two choices); and Kappa. Clicking on "Cells" lets you ask for your two columns of numbers to be presented as table that includes both the observed and expected frequencies, which is probably convenient; it can also include all the relative percentages of the various categories that occur in each cell, which gets ponderous. In the output, Chi-square's value, df, and significance (p-value) are easily recognizable. Under "symmetric measures" -- called that possibly because the statistics are symmetrical in the sense that the above- and below-the-diagonal values in a correlation matrix are the same -- a value is reported for Phi (whose significance matches that of Chi-square); the Pearson correlation coefficient and its p-value (not the same as Chi-square's p-value, even though it's an alternate way of testing that same phi coefficient!); and finally Kappa. You might copy and paste the two columns of 1's and 0's at the top of this file into SPSS and run these analyses to see where all the numbers appear in the output.

